Клод Элвуд Шеннон (30 апреля 1916, Гэйлорд, штат Мичиган - 24 февраля 2001, Кеймбридж, штат Массачусетс) |
||
|
американский инженер и математик. Один из создателей математической теории информации. Основные труды по теории релейно-контактных схем, математической теории связи, кибернетике.
Основоположник теории информации (работа "Математическая теория связи"). Определил количество информации через энтропию. Теорема о пропускной способности каналов связи. Превращение криптографии в науку (работа "Теория связи секретных систем") . Ещё в детские годы Клод познакомился как с детальностью технических конструкций, так и с общностью математических принципов. Он постоянно возился с детекторными приемниками и радиоконструкторами, которые приносил ему отец, помощник судьи, и решал математические задачки и головоломки, которыми снабжала его старшая сестра Кэтрин, ставшая впоследствии профессором математики. Клод полюбил эти два мира, столь несхожие между собой, - технику и математику. Будучи студентом Мичиганского университета, который он окончил в 1936, Клод специализировался одновременно и в математике, и в электротехнике. Эта двусторонность интересов и образования определила первый крупный успех, которого Клод Шеннон достиг в свои аспирантские годы в Массачусетском технологическом институте. В своей диссертации, защищенной в 1940, он доказал, что работу переключателей и реле в электрических схемах можно представить посредством алгебры, изобретённой в середине XIX века английским математиком Джорджем Булем. "Просто случилось так, что никто другой не был знаком с этими обеими областями одновременно!" - так скромно Шеннон объяснил причину своего открытия. В 1941 25-летний Клод Шеннон поступил на работу в Bell Laboratories. В годы войны он занимался разработкой криптографических систем, и позже это помогло ему открыть методы кодирования с коррекцией ошибок. А в свободное время он начал развивать идеи, которые потом вылились в теорию информации. Исходная цель Шеннона заключалась в улучшении передачи информации по телеграфному или телефонному каналу, находящемуся под воздействием электрических шумов. Он быстро пришел к выводу, что наилучшее решение проблемы заключается в более эффективной упаковке информации. Но что же такое информация? Чем измерять ее количество? Шеннону пришлось ответить на эти вопросы еще до того, как он приступил к исследованиям пропускной способности каналов связи. В своих работах 1948-1949 годов он определил количество информации через энтропию - величину, известную в термодинамике и статистической физике как мера разупорядоченности системы, а за единицу информации принял то, что впоследствии окрестили "битом", то есть выбор одного из двух равновероятных вариантов. Позже Шеннон любил рассказывать, что использовать энтропию ему посоветовал знаменитый математик Джон фон Нейман, который мотивировал свой совет тем, что мало кто из математиков и инженеров знает об энтропии, и это обеспечит Шеннону большое преимущество в неизбежных спорах. Шутка это или нет, но как трудно нам теперь представить, что всего пол века назад понятие "количество информации" еще нуждалось в строгом определении и что это определение могло вызвать какие-то споры. На прочном фундаменте своего определения количества информации Клод Шеннон доказал удивительную теорему о пропускной способности зашумленных каналов связи. Во всей полноте эта теорема была опубликована в его работах 1957-1961 годов и теперь носит его имя. В чем суть теоремы Шеннона? Всякий зашумленный канал связи характеризуется своей предельной скоростью передачи информации, называемой пределом Шеннона. При скоростях передачи выше этого предела неизбежны ошибки в передаваемой информации. Зато снизу к этому пределу можно подойти сколь угодно близко, обеспечивая соответствующим кодированием информации сколь угодно малую вероятность ошибки при любой зашумленности канала. Эти идеи Шеннона оказались слишком провидческими и не смогли найти себе применения в годы медленной ламповой электроники. Но в наше время высокоскоростных микросхем они работают повсюду, где хранится, обрабатывается и передается информация: в компьютере и лазерном диске, в факсимильном аппарате и межпланетной станции. Мы не замечаем теорему Шеннона, как не замечаем воздух. Кроме теории информации, неуемный Шеннон приложился во многих областях. Одним из первых он высказал мысль о том, что машины могут играть в игры и самообучаться. В 1950 он сделал механическую мышку Тесей, дистанционно управляемую сложной электронной схемой. Эта мышка училась находить выход из лабиринта. В честь его изобретения IEEE учредил международный конкурс "микромышь", в котором до сих пор принимают участие тысячи студентов технических вузов. В те же 50-е годы Шеннон создал машину, которая "читала мысли" при игре в "монетку": человек загадывал "орел" или "решку", а машина отгадывала с вероятностью выше 50%, потому что человек никак не может избежать каких-либо закономерностей, которые машина может использовать. В 1956 Шеннон покинул Bell Labs и со следующего года стал профессором Массачусетского технологического института, откуда ушел на пенсию в 1978 году. В числе его студентов был, в частности, Марвин Мински и другие известные ученые, работавшие в области искусственного интеллекта. Труды Шеннона, к которым с благоговением относятся деятели науки, столь же интересны и для специалистов, решающих сугубо прикладные задачи. Шеннон заложил основание и для современного кодирования с коррекцией ошибок, без которого не обходится сейчас ни один дисковод для жестких дисков или система потокового видео, и, возможно, многие продукты, которым еще только предстоит увидеть свет. В МТИ и на пенсии им полностью завладело его давнее увлечение жонглированием. Шеннон построил несколько жонглирующих машин и даже создал общую теорию жонглирования, которая, впрочем, не помогла ему побить личный рекорд - жонглирование четырьмя мячиками. Еще он испытал свои силы в поэзии, а также разработал разнообразные модели биржи акций и опробовал их (по его словам - успешно) на собственных акциях. Но с начала 60-х годов Шеннон не сделал в теории информации практически больше ничего. Это выглядело так, как будто ему всего за 20 лет надоела созданная им же теория. В 1985 Клод Шеннон и его жена Бетти неожиданно посетили Международный симпозиум по теории информации в английском городе Брайтоне. Почти целое поколение Шеннон не появлялся на конференциях, и поначалу его никто не узнал. Затем участники симпозиума начали перешептываться: вон тот скромный седой джентльмен - это Клод Элвуд Шеннон, тот самый! На банкете Шеннон сказал несколько слов, немного пожонглировал тремя (увы, только тремя) мячиками, а затем подписал сотни автографов ошеломлённым инженерам и учёным, выстроившимся в длиннейшую очередь. Стоящие в очереди говорили, что испытывают такие же чувства, какие испытали бы физики, явись на их конференцию сам сэр Исаак Ньютон. Клод Шеннон скончался в массачусетском доме для престарелых от болезни Альцгеймера на 84 году жизни. |
|
Источники:
Последнее обновление страницы 23.10.04 14:59:13 |